Гибкие магнитные диски скорость обмена данными

Гибкие магнитные диски скорость обмена данными

Магнитные диски используются как запоминающие устройства,позволяющие хранить информацию долговременно, при отключенном питании. Для работы с Магнитными Дисками используется устройство, называемое накопителем на магнитных дисках (НМД).

Основные виды накопителей:

· накопители на гибких магнитных дисках (НГМД);

· накопители на жестких магнитных дисках (НЖМД);

· накопители на магнитной ленте (НМЛ);

· накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

· гибкие магнитные диски (Floppy Disk) (диаметром 3,5’’ и ёмкостью 1,44 Мб; диаметром 5,25’’ и ёмкостью 1,2 Мб (в настоящее время устарели и практически не используются, выпуск накопителей, предназначенных для дисков диаметром 5,25’’, тоже прекращён)), диски для сменных носителей;

· жёсткие магнитные диски (Hard Disk);

· кассеты для стримеров и других НМЛ;

· диски CD-ROM, CD-R, CD-RW, DVD.

Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации, различают: электронные, дисковые и ленточные устройства.

Основные характеристики накопителей и носителей:

· скорость обмена информацией;

· надёжность хранения информации;

Принцип работы магнитных запоминающих устройств основан на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственно устройств чтения/записи информации и магнитного носителя, на который, непосредственно осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей – дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись производится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение величины напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1.

Обычно НМД состоит из следующих частей :

Магнитный диск представляет собой основу с магнитным покрытием, которая вращается внутри дисковода вокруг оси.

Магнитное покрытие используется в качестве запоминающего устройства.

Магнитные Диски бывают : жесткие(Винчестер) и гибкие(Флоппи). Накопитель на жестких магнитных дисках — НЖМД(HDD). Накопитель на гибких магнитных дисках — НГМД(FDD).

Кроме НЖМД и НГМД довольно часто используют сменные носители. Довольно популярным накопителем является Zip. Он выпускается в виде встроенных или автономных блоков, подключаемых к параллельному порту. Эти накопители могут хранить 100 и 250 Мб данных на картриджах, напоминающих дискету формата 3,5’’, обеспечивают время доступа, равное 29 мс, и скорость передачи данных до 1 Мб/с. Если устройство подключается к системе через параллельный порт, то скорость передачи данных ограничена скорость параллельного порта.

К типу накопителей на сменных жёстких дисках относится накопитель Jaz. Ёмкость используемого картриджа — 1 или 2 Гб. Недостаток — высокая стоимость картриджа. Основное применение — резервное копирование данных.

В накопителях на магнитных лентах (чаще всего в качестве таких устройств выступают стримеры) запись производится на мини-кассеты. Ёмкость таких кассет — от 40 Мб до 13 Гб, скорость передачи данных — от 2 до 9 Мб в минуту, длина ленты — от 63,5 до 230 м, количество дорожек — от 20 до 144.

Жесткий магнитный диск

Жесткие магнитные диски представляют собой несколько металлических либо керамических дисков, покрытых магнитным слоем. Диски вместе с блоком магнитных головок установлены внутри герметичного корпуса накопителя на жестких магнитных дисках (НЖМД), обычно называемого винчестером.

Термин «винчестер» возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973гю), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30"/30" известного охотничьего ружья «винчестер». Жесткий диск представляет собой очень сложное устройство с высокоточной механикой и электронной платой, управляющей работой диска.

Структура жестких дисков имеет в целом такую же структуру, как и гибкие магнитные диски.

Магнитные пластины, установленные в накопителе, размещены на одной оси и вращаются с большой угловой скоростью. Обе стороны каждой пластины покрыты тонким слоем намагниченного материалазапись проводится на обе поверхности каждой пластины (кроме крайних).

У каждой магнитной стороны каждой пластины есть своя магнитная головка чтения/записи. Эти головки соединяются вместе и движутся радиально (по радиусу) по отношению к пластинам. Таки образом обеспечивается доступ к любой дорожке любой пластины

За счет использования нескольких магнитных пластин и гораздо большего количества дорожек на каждой стороне пластины информационная емкость жестких дисков может достигать 500 Гбайт.

Также как и НГМД, НЖМД относится к классу носителей с произвольным доступом к информации.

Основные характеристики винчестеров:

— быстродействие, определяемое временем доступа к нужной информации, временем ее считывания/записи и скоростью передачи данных

— емкость, то есть максимальданных, который можно записать на носитель;

— время безотказной работы (обычно составляет примерно 50 лет).

Во всех современных дисковых накопителях устанавливается кэш-буфер (память), ускоряющий обмен данными; чем больше его емкость, тем выше вероятность того, что в кэш-памяти будет необходимая информация, которую не надо считывать с диска (этот процесс в тысячи раз медленней); емкость кэш-буфера в разных устройствах может изменяться в границах от 64 Кбайт до 2Мбайт.

Существуют сменные жесткие диски и, соответственно, дисководы для них. Главным образом они используются для переноса больших объемов информации между компьютерами либо для хранения архивных данных.

Основной тип — Jaz-диск. Его емкость в зависимости от модели от 540 Мбайт до 1,07 Гбайт.

Гибкие магнитные диски

Одним из наиболее распространенных носителей информации являются гибкие магнитные диски (дискеты), или флоппи-диски. Диски называются гибкими потому, что их рабочая поверхность изготовлена из эластичного материала и покрыта специальной, достаточно плотной пленкой, покрытой ферромагнитным слоем.

Дискета помещается в твердый защитный пластмассовый корпус. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри корпуса. Для доступа к магнитной поверхности диска в защитном конверте имеется закрытое шторкой окно.

Хранение данных, представленных двоичным кодом, обеспечивает магнитный слой, который может иметь намагниченные и ненамагниченные участки. Намагниченный участок поверхности кодируется как 1, ненамагниченный — как 0.

Информация записывается с двух сторон диска на дорожках, которые представляют собой концентрические окружности. Каждая дорожка разделяется на секторы. Запись и чтение информации с дискеты возможна только при наличии на ней разметки на дорожки и секторы.

Для работы с гибкими магнитными дисками предназначено устройство, называемое дисководом, или накопителем на гибких магнитных дисках (НГМД). Нгмд относится к группе накопителей прямого доступа и устанавливается внутри системного блока.

НГМД приводится во вращение только при команде чтения или записи, в другое время он находится в покое. При обращении к НГМД для записи/чтения информации магнитная головка накопителя устанавливается над тем сектором диска, куда нужно записать или откуда требуется считать информацию.

Для этого один двигатель накопителя обеспечивает вращение диска внутри защитного конверта, а другой перемещает головку чтения / записи вдоль радиуса поверхности диска. Головка чтения-записи во время работы механически контактирует с поверхностью дискеты, что приводит к быстрому изнашиванию дискет.

Для того, чтобы на диске можно было хранить информацию, диск должен быть отформатирован, то есть должна быть создана физическая и логическая структура диска. Форматирование диска производится специальной программой, входящей в системное программное обеспечение.

Форматирование — создание физической и логической структуры диска.

Физическая структура диска

Основными элементами физической структуры диска являются:

У каждой дискеты есть две стороны. Система рассматривает первую сторону с номером 0, а вторую — как сторону с номером 1.

Жесткие диски имеют несколько поверхностей для записи, называемых пластинами. Нумерация сторон следующая: первой стороне первой пластины присвоен номер 0, второй стороне — номер 1, первой стороне второй пластины — номер 2 и так далее.

Каждая сторона пластины разделена на концентрические полоски, называемые дорожками — зона для записи данных, к которой подводится головка считывания-записи.

Самая дальняя от центра дорожка на нулевой стороне верхней пластины диска — дорожка с номером 0 на стороне 0. Дорожки нумеруются последовательно от нулевой до самой ближней к центру. Число дорожек зависит от типа диска.

Каждая дорожка делится на сектора. У диска на каждой дорожке одинаковое количество секторов. Нумерация секторов производится последовательно с 1 сектора нулевой дорожки до последнего сектора последней дорожки.

Каждый сектор имеет размер 512 байт. Поэтому плотность записи данных на дорожках, лежащих ближе к центру выше, чем на крайних.

Цилиндр — так называют дорожки, расположенные на разных сторонах диска (для жестких дисков и на разных пластинах), но имеющие одинаковый радиус.

Кластер — минимальный адресуемый элемент носителя информации (см. логическую структуру диска)

Форматирование физической структуры диска состоит в магнитной разметке поверхности диска на дорожки и секторы. Для этого в процессе форматирования магнитная головка дисковода расставляет в определенных местах диска метки дорожек и секторов. После форматирования гибкого диска 3,5", его стандартные параметры будут следующие:

Читайте также:  Как открыть домофон ласкомекс без ключа

-дорожек на одной стороне – 80

-количество секторов на одной дорожке – 18

-информационная емкость сектора – 512 байт

Логическая структура диска

Основными элементами логической структуры диска являются:

Кластер — минимальный адресуемый элемент носителя информации, который может включать в себя несколько секторов. Размер кластера (от 512 байтов до 64Кбайт) зависит от типа используемой файловой системы. На гибком диске кластер равен 1 сектору, то есть минимальным адресуемым элементом на дискете является сектор.

Файловая система отслеживает, какие из кластеров в настоящий момент используются, какие свободны, какие помечены, как неисправные.

При записи файла всегда будет занято целое число кластеров, соответственно минимальный размер файла равен размеру одного кластера.

Таблица размещения файлов (FAT-таблица), в которой содержится полная информация о кластерах, которые занимают файлы.

Корневой каталог. Файловая система организует кластеры в файлы и каталоги. Каталоги реально являются также файлами определенной структуры, содержащими список файлов и подкаталогов, принадлежащих данному каталогу. Для размещения корневого каталога и таблицы FAT на гибком диске отводятся сектора со 2 по 33.

Первый сектор отводится для азмещения загрузочной записи операционной системы. Сами файлы могут быть записаны, начиная с 34 сектора.

Основными параметрами дискеты является технологический размер (в дюймах), плотность записи и полная емкость. В настоящее время стандартом являются дискеты размером 3,5 дюйма, высокой плотности HD, имеющие емкость 1,44 Мбайта.

Что такое буфер обмена?

Буфер обмена — это временная область хранения информации, скопированной или перемещенной из одного места и предназначенной для вставки в другое место. Можно выбрать текст или графический объект и затем с помощью команд «Вырезать» или «Копировать» поместить выбранное в буфер обмена, где оно будет храниться до тех пор, пока не будет помещено в выбранное место с помощью команды «Вставить». Например, можно скопировать фрагмент текста с веб-узла, а затем вставить его в почтовое сообщение. Буфер обмена доступен в большинстве программ для Windows.

Файлы и каталоги

Файл (англ. file) — блок информации на внешнем запоминающем устройстве компьютера, имеющий определённое логическое представление (начиная от простой последовательности битов или байтов и заканчивая объектом сложной СУБД), соответствующие ему операции чтения-записи и, как правило, фиксированное имя (символьное или числовое), позволяющее получить доступ к этому файлу и отличить его от других файлов.

Катало́г (англ. directory — справочник, указатель) — объект в файловой системе, упрощающий организацию файлов. Типичная файловая система содержит большое количество файлов и каталоги помогают упорядочить её путём их группировки.

Каталог, прямо или косвенно включающий в себя все прочие каталоги и файлы файловой системы, называется корневым. В Unix-подобных ОС он обозначается символом / (дробь, слеш), в DOS и Windows исторически используется символ (обратный слеш), но с некоторого времени поддерживается и /.

Родительским каталогом называется каталог, в котором находится текущий. Он обозначается двумя точками (..).

Каталоги в UNIX

Каталог в UNIX — это файл, содержащий несколько inode и привязанные к ним имена.[1] В современных UNIX-подобных ОС вводится структура каталогов, соответствующая стандарту FHS.

Все современные ОС обеспечивают создание файловой системы, которая предназначена для хранения данных на дисках и обеспечения доступа к ним.

Основные функции файловой системы можно разделить на две группы:

Функции для работы с файлами (создание, удаление, переименование файлов и т.д.)

Функции для работы с данными, которые хранятся в файлах (запись, чтение, поиск данных и т.д.)

Известно, что файлы используются для организации и хранения данных на машинных носителях. Файл – это последовательность произвольного числа байтов, обладающая уникальным собственным именем или поименованная область на машинных носителях.

Структурирование множества файлов на машинных носителях осуществляется с помощью каталогов, в которых хранятся атрибуты (параметры и реквизиты) файлов. Каталог может включать множество подкаталогов, в результате чего на дисках образуются разветвленные файловые структуры.Организация файлов в виде древовидной структуры называется файловой системой.

Принцип организации файловой системы – табличный. Данные о том, в каком месте на диске записан файл, хранится в таблице размещения файлов (File Allocation Table, FAT).

Эта таблица размещается в начале тома. В целях защиты тома на нем хранятся две копии FAT. В случае повреждения первой копии FAT дисковые утилиты могут воспользоваться второй копией для восстановления тома.

По принципу построения FAT похожа на оглавление книги, так как операционная система использует ее для поиска файла и определения кластеров, которые этот файл занимает на жестком диске.

Наименьшей физической единицей хранения данных является сектор. Размер сектора 512 байт. Поскольку размер FAT – таблицы ограничен, то для дисков, размер которых превышает 32 Мбайт, обеспечить адресацию к каждому отдельному сектору не представляется возможным.

В связи с этим группы секторов условно объединяются в кластеры. Кластер является наименьшей единицей адресации к данным. Размер кластера, в отличие от размера сектора, не фиксирован и зависит от емкости диска.

Сначала для дискет и небольших жестких дисков (менее 16 Мбайт) использовалась 12-разрядная версия FAT (так называемая FAT12). Затем в MS-DOS была введена 16-разрядная версия FAT для более крупных дисков.

Операционные системы MS DOS, Win 95, Win NT реализуют 16 – разрядные поля в таблицах размещения файлов. Файловая система FAT32 была введена в Windows 95 OSR2 и поддерживается в Windows 98 и Windows 2000.

FAT32 представляет собой усовершенствованную версию FAT, предназначенную для использования на томах, объем которых превышает 2 Гбайт.

FAT32 обеспечивает поддержку дисков размером до 2 Тбайт и более эффективное расходование дискового пространства. FAT32 использует более мелкие кластеры, что позволяет повысить эффективность использования дискового пространства.

В Windows XP применяется FAT32 и NTFS. Более перспективным направлением в развитии файловых систем стал переход к NTFS (New Technology File System – файловая система новой технологии)с длинными именами файлов и надежной системой безопасности.

Объем раздела NTFS не ограничен. В NTFS минимизируется объем дискового пространства, теряемый вследствие записи небольших файлов в крупные кластеры. Кроме того, NTFS позволяет экономить место на диске, сжимая сам диск, отдельные папки и файлы.

По способам именования файлов различают “короткое” и “длинное” имя.

Согласно соглашению, принятому в MS-DOS, способом именования файлов на компьютерах IBM PC было соглашение 8.3., т.е. имя файла состоит из двух частей: собственно имени и расширения имени. На имя файла отводится 8 символов, а на его расширение – 3 символа.

Имя от расширения отделяется точкой. Как имя, так и расширение могут включать только алфавитно-цифровые символы латинского алфавита. Имена файлов, записанные в соответствии с соглашением 8.3, считаются “короткими”.

С появлением операционной системы Windows 95 было введено понятие “длинного” имени. Такое имя может содержать до 256 символов. Этого вполне достаточно для создания содержательных имен файлов. “Длинное” имя может содержать любые символы, кроме девяти специальных: / : * ? “ |.

В имени разрешается использовать пробелы и несколько точек. Имя файла заканчивается расширением, состоящим из трех символов. Расширение используется для классификации файлов по типу.

Уникальность имени файла обеспечивается тем, что полным именем файла считается собственное имя файла вместе с путем доступа к нему. Путь доступа к файлу начинается с имени устройства и включает все имена каталогов (папок), через которые проходит. В качестве разделителя используется символ “” (обратный слеш — обратная косая черта).Например: D:Documents and SettingsТВАМои документыlessons-tva robots.txt

Несмотря на то, что данные о местоположении файлов хранятся в табличной структуре, пользователю они представляются в виде иерархической структуры – людям так удобнее, а все необходимые преобразования берет на себя операционная система.

К функции обслуживания файловой структуры относятся следующие операции, —происходящие под управлением операционной системы:

-создание файлов и присвоение им имен;-создание каталогов (папок) и присвоение им имен;-переименование файлов и каталогов (папок);

-копирование и перемещение файлов между дисками компьютера и между каталогами (папками) одного диска;

-удаление файлов и каталогов (папок); -навигация по файловой структуре с целью доступа к заданному файлу, каталогу (папке);

-управление атрибутами файлов.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Накопители на гибких магнитных дисках (НГМД, флоппи-дисководы, Floppy Drive, FDD) – устройства, предназначенные для записи и чтения информации с гибких магнитных дисков (ГМД, дискет). Дискеты позволяют переносить документы и программы с одного компьютера на другой, а также хранить данные, не используемые постоянно на компьютере.

На гибком магнитном диске магнитный слой наносится на гибкую основу. Используемые в ПК ГМД имеют форм-фактор 5,25 дюйма (133 мм) и 3,5 дюйма (89 мм). Емкость ГМД колеблется в пределах от 180 Кбайт до 2,88 Мбайт.

Накопители на оптических дисках

Появившийся в 1982 году благодаря фирмам Philips и Sony оптический компакт-диск произвел кардинальный переворот в области персональных компьютеров и индустрии развлечений. Компакт-диски расширили сферу применения инфор­мационных технологий. На сегодняшний день компакт-диск – недорогой, массо­во воспроизводимый, надежный, одним словом, лучший носитель для звуковых записей, компьютерных игр и мультимедийных программ, установочных пакетов и наборов фотографий.

Сегодня накопители на оптических дисках (НОД) – обязательный атрибут лю­бого персонального компьютера. Большая их емкость в сочетании с весьма высо­кой надежностью и невысокой стоимостью как дисководов, так и дисков, делает НОД незаменимыми для сохранения и распространения программ (установоч­ных пакетов), а также для долговременного хранения больших объемов инфор­мации, баз данных, например.

Читайте также:  Короткая катушка площадью поперечного сечения 250

Основными достоинствами НОД являются:

сменяемость и компактность носителей;

большая информационная емкость;

высокая надежность и долговечность дисков и головок чтения-записи (до 50 лет);

меньшая (по сравнению с НМД) чувствительность к загрязнениям и вибра­циям;

нечувствительность к электромагнитным полям.

Оптические накопители выпускаются в нескольких модификациях.

1. Классические компакт-диски:

CD-ROM – Compact Disk Read Only Memory, неперезаписываемые лазерно-оптические диски или компакт-диски ПЗУ;

CD-R – Compact Disk Recordable, компакт-диски с однократной записью (их иногда называют также CD-WORM – CD Write Once, Read Many и CD-WO – CD Write Once);

CD-RW – CD Rewritable, компакт-диски перезаписываемые, с многократ­ной записью (их раньше называли CD-E – CD Erasable – стираемые).

2. Цифровые универсальные диски:

DVD-ROM – Digital Versatile Disk Read Only Memory, неперезаписываемые цифровые универсальные диски;

DVD-R –DVD Recordable, цифровые универсальные диски с однократ­ной записью;

DVD-RW – DVD Rewritable или DVD-RAM — DVD Read Access Memory, цифровые перезаписываемые универсальные диски.

Неперезаписываемые лазерно-оптические диски CDROM

Массовое распространение получили CD-ROM. Компакт-диск представляет со­бой пластиковый поликарбонатовый круг диаметром 4,72 дюйма (встречаются компакт-диски и диаметром 3,5; 5,25; 12 и 14 дюймов) и толщиной 0,05 дюйма, с отверстием в центре диаметром 0,6 дюйма и имеет двухслойное покрытие: тончайший отражающий металлический (обычно алюминиевый) слой и лаковое покрытие. Эти диски поставляются фирмой-изготовителем с уже записанной на них информацией (в частности, с программным обеспечением). Запись инфор­мации на них возможна только вне ПК, в лабораторных условиях, лазерным лучом большой мощности, который оставляет на поликарбонатной основе CD след – дорожку с микроскопическими впадинами (питами, pits). Питы имеют ширину около 0,5 микрон и следуют друг за другом, образуя единую спиральную дорожку с шагом 1,6 микрона (для сравнения: тонкий человеческий волос имеет диаметр 75 микрон). Каждый пит в зависимости от своей длины может кодиро­вать несколько битов информации. Таким образом создается первичный «мас­тер-диск». Процесс массового тиражирования CD-ROM по «мастер-диску» вы­полняется путем литья под давлением.

Дорожка на CD, в отличие от магнитных дисков, спиральная и очень узкая. Впа­дины имеют глубину примерно 5 миллиардных долей дюйма и ширину в 24 мил­лиардные доли дюйма; плотность дорожек – 16 000 дорожек на дюйм. Длина всей спиральной дорожки около 5 км. В оптическом дисководе ПК информация с дорожки читается лазерным лучом существенно меньшей мощности. Лазерный луч фокусируется на дорожке диска и отражается от выпуклостей питов, меняя свою интенсивность. Отраженный луч улавливается фотоприемником (фото­диодом) оптической читающей головки.

CD-ROM ввиду весьма плотной записи информации имеют емкость от 250 Мбайт до 1,5 Гбайт (наиболее распространенная емкость 650 Мбайт), время доступа в разных оптических дисках колеблется от 50 до 350 мс, скорость считывания информации – от 150 до 7800 Кбайт/с. Приводы CD-ROM сущест­венно отличаются по скорости передачи данных. Она зависит от двух факто­ров: плотности записи информации на поверхности диска и скорости вращения диска. Последняя является параметром, указываемым в марке дисковода в виде Nx-коэффициента кратности, сообщающего, во сколько раз ли­нейная скорость дисковода превышает так называемую «единичную» скорость, равную 150 Кбайт/с. Сейчас имеются модели с любыми четными значениями этого коэффициента от двух (2х) до 56 (56х), последние обеспечивают трансфер более 6 Мбайт/с. Следует заметить, что прямой линейной зависимости между коэффициентом кратности и трансфером нет, например реальная скорость CD-ROM с кратностью 50х оказывается обычно намного ниже теоретической – часто соответствующей 40х.

Дисководы CD-ROM менее чем с двадцатикратным уличением скорости не позволят качественно реализовать многие современные технологии мультимедиа, да и многие программные приложения вообще, этому они сейчас не выпускаются.

Дисковод обеспечивает считывание информации «из глубины» диска, для этого лазер фокусируется не на внешней поверхности, а непосредственно на инфор­мационном слое. Грязь и царапины на покрытии, таким образом, оказываются не в фокусе и до определенного предела игнорируются. Кроме того, для обеспе­чения надежной работы информация на компакт-дисках кодируется с боль­шой избыточностью с использованием корректирующего кода Рида-Соломона (Reed-Solomon code), обеспечивающего возможность восстановления исходной информации при значительном числе ошибок ее считывания.

Оптические диски с однократной записью

Накопители CD-R позволяют однократно записывать информацию на диски с форм-фактором 4,72 и 3,5 дюйма. Для записи используются специальные заготовки дисков, иногда называемые мишенями (target). На поверхность заготовок нанесено три слоя покрытия: непосредственно на основу диска из поликарбона­та нанесен активный (регистрирующий) слой из пластика; активный слой покрыт тончайшей отражающей пленкой из золота (использовалась в первых моделях, а сейчас в особо надежных моделях) или серебра (дешевле и обладает лучшим светоотражением); сверху все полито слоем защитного лака. Заготовки также имеют нанесенную спираль­ную дорожку, на которой позиционируется записывающая головка.

При записи лазерный луч непосредственно в дисководе компьютера прожигает необратимые микроскопические углубления – питы (pits) – в активном слое. Ввиду разницы отражения от ямок и от не выжженных участков поверхности при считывании происходит модуляция интенсивности отраженного луча, воспринимаемого головкой чтения. Запись в современных CD-R может выполняться на скорости более 12х. Чтение производится лазерным лучом так же, как и у CD-ROM. Дисководы CD-R совместимы с обычными CD-ROM, естественно, при совпадении формата диска.

Оптические диски с многократной записью

Накопители CD-RW позволяют многократно записывать информацию на диски с отражающей поверхностью, под которую нанесен слой типа Ag-In-Sb-Te (содержащий серебро, индий, сурьму, теллур) с изменяемой фазой состояния. Фаза этого пластика, кристаллическая или аморфная, изменяется в зависимости от скорости остывания после разогрева поверхности лазерным лучом в процессе запи­си, выполняемой непосредственно в дисководе ПК. При медленном остывании пластик переходит в кристаллическое состояние и информация стирается (запи­сывается "0"); при быстром остывании (если разогрета только микроскопическая точка) элементик пластика переходит в аморфное состояние (записывается "1"). Ввиду разницы коэффициентов отражения от кристаллических и аморф­ных микроскопических точек активного слоя при считывании происходит модуляция интенсивности отраженного луча, воспринимаемого головкой чтения.

Лучшие образцы дисков CD-RW выдерживают несколько сотен циклов перезаписи. Коэффициент кратности скорости при записи информации у современных моделей не превосходит 10х. Читать CD-RW могут только высокочувствитель­ные дисководы (чтение записи выполняется лазерным лучом), поскольку отра­женный луч у них значительно слабее (отражающая способность их активного слоя составляет 25-30% от уровня обычного CD), нежели у CD-ROM и CD-R. Перезаписываемые диски целесообразно использовать для хранения больших объемов обновляющихся данных (например, для создания резервных копий важной информации) и для обмена данными с другими ПК.

Настоящий переворот в технике внешних запоминающих устройств готовы совершить, впервые появившиеся в 1996 году цифровые видеодиски, имеющие габариты обычных CD-ROM, но значительно большей емкости, которая у них достигает 24 Гбайт.

DVD – Digital Versatile Disk, цифровой универсальный диск (иногда его называют Digital Video Disk, цифровой видеодиск). Физически DVD-диск – это тот же привычный диск диаметром 4,72 дюйма (существует стандарт также на 3,5 дюйма) и толщиной 0,05 дюйма. Так же как и компакт-диск, он не изнашива­йся (или почти не изнашивается) со временем, не чувствителен к магнитному и инфракрасному излучениям и мало чувствителен к повышенным температурам.

Но в DVD используются однослойная и двухслойная, односторонняя и двухсторонняя уплотненная запись. Уплотнение записи данных на DVD было достигнуто путем уменьшения диаметра пишущего-читающего луча (зелено-голубой лазер) в два раза, при этом уменьшаются сами точки (питы), сокращается расстояние между соседними точками на дорожке и увеличивается количество дорожек. Только за счет повышения плотности записи удалось достичь более чем четырехкратного роста емкости. А за счет других ресурсов, таких как большая область данных, более эффективная битовая модуляция каналов, более эффективное исправление ошибок, меньшее перекрытие секторов, емкость по сравнению с CD увеличилась в семь раз:

стандартный однослойный односторонний диск DVD может хранить 4,7 Гбайт данных,

двухслойный накопитель имеет емкость в 8,5 Гбайт (относительное уменьшение емкости по сравнению с двухкратной однослойной связано с необходимостью снижения помех, наводимых верхним слоем при считывании нижнего).

Скорость чтения у DVD лежит в пределах 1,4-14 Мбайт/с. Наличие более сложной оптической системы замедляет время доступа к нужной информации на диске от 100 мс у современных CD-ROM до 170 мс – у DVD-ROM. Ситуацию, впрочем, несколько выправляет наращенный до 512 Кбайт кэш, сохраняющий теперь больше считанной в процессе работы информации.

Фирма Sony, выпустила двухсторонний, двухслойный DVD с голубым лазером емкостью 24 Гбайт.

Самый простой тип записываемого DVD – это DVD-R, который предусматривает однократную запись информации на носитель с последующим многократным чтением. В DVD-R используется органическая полимерная технология, в основном подобная применяемой в CD-R, и этот формат совместим практически со всеми дисководами DVD. На сегодняшний день емкость подобных дисков еще не достигла значений, присущих DVD-ROM, однако принципиальных проблем нет, и в обозримом будущем емкости сравняются. Во всяком случае, формат 4,7 Гбайт DVD-R уже объявлен фирмами Matsushita, Mitsubishi и Hitachi (Maxell).

Среди перезаписываемых DVD сегодня конкурируют два равновесомых формата – DVD-RAM и DVD-RW. Первый формат, продвигаемый фирмами Hitachi, Matsushita и Toshiba, поддержан большинством членов DVD Forum (конвенции фирм, стоящих у истоков создания DVD) и, таким образом, официально одобрен. Второй продвигается компаниями Hewlett-Packard, Philips, Ricoh и Sony.

В основе обоих стандартов лежит одна и та же технология изменения фазы. Диск покрыт слоем специального материала, который может находиться в аморфном или кристаллическом состоянии. При этом светоотражающая способность материала в разных фазах различается примерно на 20%, что позволяет кодировать информацию. Основное различие стандартов в том, каким образом головка накопителя считывает данные с диска. В устройствах DVD-RAM считывающую головку необходимо переключать между режимами чтения канавки и площадки (пространства между канавками) при каждом обороте диска, в то время как в накопителях DVD-RW информация считывается только с канавки диска так же, как это делается в стандартных дисководах для чтения DVD-ROM.

Читайте также:  Герметик для резьбовых соединений автомобильный

Существуют и другие форматы перезаписываемых DVD-дисков. Это ASMO (ранее МО7), способный хранить до 6 Гбайт данных, и MMVF (MultiMedia Video Format) фирмы NEC с емкостью в 5,5 Гбайт. Оба типа дисководов способны читать DVD-ROM и DVD-R, однако несовместимы ни с DVD-RAM, ни с DVD-RW.

Основные достоинства DVD:

значительно большая по сравнению с CD емкость. В частности, достаточная для хранения полнометражного фильма самого высокого качества;

совместимость с CD. Устройства DVD-ROM смогут считывать существующие библиотеки данных на CD-ROM;

высокая скорость обмена данными с дисководом DVD;

высокая надежность хранения данных.

Диски DVD получили широкое распространение не только в компьютерах, но и в аудио- и видеомагнитофонах. В частности, для хранения одного часа усредненного видеофильма требуется приблизительно два гигабайта данных.

Основными локальными интерфейсами для DVD являются интерфейсы IDE-ATAPI, SCSI, USB, Serial ATA.

Для маркировки скоростных характеристик накопителей на оптических дисках часто используется скоростная формула.

В частности, для CD-накопителей она выглядит так: KxMxNx, где: Кх – кратность скорости записи на CD-R; Мх – кратность скорости записи на CD-RW; Nx – кратность скорости чтения.

В последние годы стали популярными комбинированные приводы, объединяющие накопители CD и DVD. Скоростная формула комбо-привода выглядит так: LxKxMxNx, где: Lx – кратность скорости чтения DVD; Кх – кратность скорости записи на CD-R; Мх – кратность скорости записи на CD-RW; Nx – кратность скорости чтения CD.

Однократная скорость для CD равна 150 Кбайт/с, а для DVD – 1350 Кбайт/с.

Например, формула скорости комбинированного привода 8х12х8х32х означает: скорость чтения DVD 10 800 Кбайт/с; скорость записи на CD-R 1800 Кбайт/с; скорость записи на CD-RW 1200 Кбайт/с; скорость чтения CD – 4800 Кбайт/с.

Информатика и информационно-коммуникационные технологии в школе

05.04.2020г.

Доброе утро!

Разделы сайта
Материалы к урокам информатики в 7-9 по ФГОС. Новые презентации. Тесты.
Планы, конспекты, презентации, методические находки, дидактический материал к уроку
Настройка и использование школьной компьютерной сети
Краткий теоретический материал, который можно применять на уроке.
Разные полезности, программы, инструкции, советы.
Как сохранить здоровье на уроках информатики
Примерные экзаменационные билеты и ответы
Программы для скачивания.
Правила для пользователей портала
Компьютерное тестирование знаний. Наш проект. Cправочное online руководство по программе
Сервисы сайта все новости. поиск по статьям сайта. вопросы, обсуждения, решаем проблемы вместе . отзывы, замечания, предложения. проверить свои знания, пройдя тесты в режиме online. образовательные сайты, друзья портала. для связи с администратором портала
____________________

Полная или частичная перепечатка каким бы то ни было способом материалов данного сайта допускается только с письменного согласия автора.
При цитировании или ином использовании материалов ссылка на сайт www.klyaksa.net обязательна.

____________________

Наши проекты:

Компьютер + Здоровье!
Примерный комплекс упражнений для глаз:
Закрыть глаза, сильно напрягая глазные мышцы, на счет 1-4, затем раскрыть глаза, расслабить мышцы глаз, посмотреть вдаль на счет 1-6. Повторить 4-5 раз. Реклама:

Устройства памяти компьютера. Носители информации (гибкие диски, жесткие диски, диски CD-ROM/R/RW, DVD и др.)

Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио-и видеоклипы и т. д.). Устройство, которое обеспечивает запись/считывание информации, называется накопителем или дисководом, а хранится информация на носителях (например, дискетах).

В накопителях на гибких магнитных дисках (НГМД или дискетах) и накопителях на жестких магнитных дисках (НЖМД или винчестерах), в основу записи, хранения и считывания информации положен магнитный принцип, а в лазерных дисководах — оптический принцип.

Гибкие магнитные диски.

Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляется в дисковод, вращающий диск с постоянной угловой скоростью. Магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и записывается (или считывается) информация.

Информационная ёмкость дискеты невелика и составляет всего 1.44 Мбайт. Скорость записи и считывания информации также мала (около 50 Кбайт/с) из-за медленного вращения диска (360 об./мин).

В целях сохранения информации гибкие магнитные диски следует предохранять от воздействия сильных магнитных полей и нагревания, так как это может привести к размагничиванию носителя и потере информации.

Жесткие магнитные диски.

Жесткий диск (HDD — Hard Disk Drive) относится к несменным дисковым магнитным накопителям. Первый жесткий диск был разработан фирмой IBM в 1973 г. и имел емкость 16 Кбайт.

Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с высокой угловой скоростью. За счет множества дорожек на каждой стороне дисков и большого количества дисков информационная емкость жестких дисков может в десятки тысяч раз превышать информационную емкость дискет и достигать сотен Гбайт. Скорость записи и считывания информации с жестких дисков достаточно велика (около 133 Мбайт/с) за счет быстрого вращения дисков (7200 об./мин).

Часто жесткий диск называют винчестер. Бытует легенда, объясняющая, почему за жесткими дисками повелось такое причудливое название. Первый жесткий диск, выпущенный в Америке в начале 70-х годов, имел емкость по 30 Мб информации на каждой рабочей поверхности. В то же время, широко известная в той же Америке магазинная винтовка О. Ф. Винчестера имела калибр — 0.30; может грохотал при своей работе первый винчестер как автомат или порохом от него пахло — не ясно, но с той поры стали называть жесткие диски винчестерами.

В процессе работы компьютера случаются сбои. Вирусы, перебои энергоснабжения, программные ошибки — все это может послужить причиной повреждения информации, хранящейся на Вашем жестком диске. Повреждение информации далеко не всегда означает ее потерю, так что полезно знать о том, как она хранится на жестком диске, ибо тогда ее можно восстановить. Тогда, например, в случае повреждения вирусом загрузочной области, вовсе не обязательно форматировать весь диск (!), а, восстановив поврежденное место, продолжить нормальную работу с сохранением всех своих бесценных данных.

В жестких дисках используются достаточно хрупкие и миниатюрные элементы. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов и резких изменений пространственной ориентации в процессе работы.

Лазерные дисководы и диски.

В начале 80-х годов голландская фирма «Philips» объявила о совершенной ею революцией в области звуковоспроизведения. Ее инженеры придумали то, что сейчас пользуется огромной популярностью — Это лазерные диски и проигрыватели.

За последние несколько лет компьютерные устройства для чтения компакт-дисков (CD), называемые CD-ROM, стали практически необходимой частью любого компьютера. Это произошло потому, что разнообразные программные продукты стали занимать значительное количество места, и поставка их на дискетах оказалась чрезмерно дорогостоящей и ненадёжной. Поэтому их стали поставлять на CD (таких же, как и обычные музыкальные).

Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD — Compact Disk, компакт диск) и DVD (DVD — Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1.
Для сохранности информации лазерные диски надо предохранять от механических повреждений (царапин), а также от загрязнения.

На лазерных дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна. Производятся такие диски путем штамповки. Существуют CD-R и DVD-R диски информация на которые может быть записана только один раз. На дисках CD-RW и DVD-RW информация может быть записана/перезаписана многократно. Диски разных видов можно отличить не только по маркировки, но и по цвету отражающей поверхности.

Запись на CD и DVD при помощи обычных CD-ROM и DVD-ROM невозможна. Для этого необходимы устройства CD-RW и DVD-RW с помощью которых возможны чтение-однократная запись и чтение-запись-перезапись. Эти устройства обладают достаточно мощным лазером, позволяющем менять отражающую способность участков поверхности в процессе записи диска.

Информационная ёмкость CD-ROM достигает 700 Мбайт, а скорость считывания информации (до 7.8 Мбайт/с) зависит от скорости вращения диска. DVD-диски имеют гораздо большую информационную ёмкость (однослойный односторонний диск — 4.7 Гбайт) по сравнению с CD-дисками, т.к. используются лазеры с меньшей длинной волны, что позволяет размещать оптические дорожки более плотно. Так же существуют двухслойные DVD-диски и двухсторонние DVD-диски. В настоящее время скорости считывания 16-скоростных DVD-дисководов достигает 21 Мбайт/с.

Устройства на основе flash-памяти.

Flash-память — это энергонезависимый тип памяти, позволяющий записывать и хранить данные в микросхемах. Устройства на основе flash-памяти не имеют в своём составе движущихся частей, что обеспечивает высокую сохранность данных при их использовании в мобильных устройствах.

Flash-память представляет собой микросхему, помещенную в миниатюрный корпус. Для записи или считывания информации накопители подключаются к компьютеру через USB-порт. Информационная емкость карт памяти достигает 1024 Мбайт.

Ссылка на основную публикацию
Где находится авито доставка
Интернет-площадка Авито является самым популярным сайтом для покупки и продажи товаров. Здесь можно приобрести не только бывшие в употреблении вещи,...
Выбрать все объекты слоя autocad
В программе AutoCAD сделано очень много различных функций, значительно упрощающие работу. Во время создания чертежа пользователь может создавать множество слоев...
Выбранная сеть недоступна samsung
Отсутствие доступа к мобильной сети может появиться по разным причинам. Чаще всего проблема оказывается в самом смартфоне, но иногда это...
Где находится аккумулятор в ноутбуке asus
О том, что батарейка БИОСа в ноутбуке подлежит замене, свидетельствует нетипичное поведение машины во время загрузки, а также сбои в...
Adblock detector