Как установить водяное охлаждение на видеокарту

Как установить водяное охлаждение на видеокарту

Идея использовать жидкость для охлаждения электронных компонентов появилась очень давно. В персональных компьютерах (ПК) она не была актуальной достаточно долгое время, пока мощности электронных компонентов были невелики.

Однако, с появлением уже центральных процессоров (ЦП) с частотами порядка сотен МГц и видеокарт с тепловыделением в десятки, а то и сотни ватт, актуальность применения систем жидкостного охлаждения снова обрела смысл.

Эффективное охлаждение, которое обеспечивает система с жидким хладагентом гораздо лучше, чем воздушное охлаждение. Связано это, в первую очередь с тем, что в отличие от систем воздушного охлаждения, где отвод тепла от процессора и его рассеивание производится внутри корпуса ПК, водяное охлаждение разбивает ту же техническую задачу на две составляющих.

При этом отвод тепла производится в водоблоке, установленном на процессоре, а его рассеивание осуществляется на радиаторе, вынесенном за пределы корпуса ПК. При этом нет необходимости в установке внутри корпуса габаритных радиаторов и мощных вентиляторов, поскольку все это вынесено за пределы корпуса.

В этом случае размер рассеивателя, а также скорость вращения обдувающих его вентиляторов может быть, в принципе, любой. Таким образом, решатся основная проблема охлаждения: благодаря жидкому хладагенту, можно получить охлаждение практически любой мощности с минимальным уровнем шума. Да, его габариты могут быть очень большими, но они не ограничиваются размерами корпуса ПК.

В настоящее время наиболее популярными являются системы водяного охлаждения (СВО), поскольку в них используется обычная дистиллированная вода, оказавшаяся по совокупности параметров самым оптимальным хладагентом для компонентов ПК.

Преимущества и недостатки систем жидкостного охлаждения

Водяное охлаждение для процессора обладает следующим преимуществами:

  • высокая эффективность;
  • тишина в работе;
  • свободное пространство внутри корпуса;
  • отсутствие запыленности внутри ПК;
  • взаимозаменяемость компонентов и полная свобода действий при модернизации охлаждения (например, можно увеличить производительность системы, поставив не один скоростной и шумный вентилятор, а три, работающих на меньшей скорости, но обеспечивающих такой же поток воздуха с минимальным уровнем шума).

Но любая медаль имеет две стороны. К недостаткам СВО можно отнести:

  1. долгое время самостоятельной сборки СВО;
  2. потенциальная опасность при её эксплуатации (случаи могут быть самые разнообразные: пролив хладагента, заклинивание помпы, недостаточная мощность обдува радиатора и т.д.);
  3. проблемы с совместимостью компонентов и поиском необходимых водоблоков;
  4. высокая стоимость СВО в целом.

Установка охладителя

Сборка и проектирование вашей системы начинается с выбора охладителей или водоблоков – приспособлений, которые будет крепиться непосредственно к нагревающимся компонентам ПК – центральному процессору, чипсету и процессору видеокарты. Они должны быть не только необходимых размеров, но также должны соответствовать отводимой мощности и иметь правильное расположение крепежа, учитывающие посадочные места на материнке и плате видеокарты.

Уже на этом этапе необходимо определиться с конструкцией всей системы в целом: типе и рассеиваемой мощности радиатора, скорости течения хладагента, мощности помпы и способе отвода хладагента за пределы корпуса. Здесь возникает масса технических вопросов, главный из которых – величина рассеиваемой на радиаторе мощности.

Важно! Мощность, рассеиваемая радиатором должна быть примерно на 20% больше суммарной мощности, «собираемой» с нагревающихся компонентов водоблоками. Необходимо посмотреть документацию на процессор, видеокарту и материнку, чтобы узнать максимальную выделяемую этими устройствами тепловую мощность. И уже, исходя из этой величины, выбрать соответствующий радиатор.

Инструменты для работы

Для сборки компонентов системы охлаждения понадобятся следующие инструменты:

  • отвёртка для крепления водоблоков к нагревающимся элементам;
  • гаечный ключ для подключения фитингов к водоблокам;
  • специальные ножницы для резки трубок, по которым будет двигаться хладагент;
  • плоскогубцы для крепления хомутами трубок к фитингам.

Фитинги – это своеобразные переходники между водоблоком и трубкой с хладагентом. Они жестко прикручиваются к охладителю одним концом, а на второй их конец надеваются трубки, затягивающиеся хомутами.

Установка охладителя на ЦП

Пожалуй, самый простой этап сборки СВО – это её установка на процессор. Водоблоки для процессора обладают стандартными размерами и точками крепления, соответствующими тому или иному типу сокета. Необходимо просто смазать поверхность процессора термопастой, установить на него водоблок и зафиксировать его при помощи болтов и отвёртки. После чего к водоблоку прикручиваются два фитинга.

Установка охладителя на видеокарту

В целом, эта процедура повторяет то, что делалось на центральном процессоре, с той лишь разницей, что охладитель видеокарты должен иметь хороший контакт не только с её процессором, но и с памятью и системой её электропитания – примерно десятком полевых транзисторов, называющихся также мосфетами.

Обычно, такие охладители выпускаются под конкретную модель видеокарты и их площадь покрывает все необходимые элементы, нуждающиеся в охлаждении. Процессор непосредственно контактирует с охладителем через тонкий слой термопасты, а чипы памяти и мосфеты получают тепловой контакт благодаря специальной термопрокладке, идущей в комплекте с водоблоком.

Установка насоса

Насос для подачи хладагента или помпа устанавливается одновременно с расширительным бачком или резервуаром. Резервуар необходим для обеспечения термического расширения охлаждающей жидкости и для содержания в себе её некоторого запаса. Оба компонента располагаются внутри корпуса. Никаких особенностей или нюансов монтажа при этом нет. Главное – надёжное крепление всей конструкции внутри корпуса.

Соединение шлангами

Когда будут установлены все компоненты внутри корпуса ПК, их соединяют шлангами. Предварительно необходимо при помощи ножниц нарезать шланги нужной длины. И здесь есть определённая сложность, заключающаяся в правильной последовательности соединения компонентов. Хладагент начинает своё движение от помпы к охлаждающимся компонентам, от менее горячего к более горячему.

Важно! Учитывая, что тепловыделение процессора составляет 40-150 ватт, видеокарты – 100-300 ватт, а чипсета не более 50 ватт, последовательность движения охлаждающей жидкости должна быть следующей: помпа – чипсет – процессор – видеокарта.

Шланги присоединяются к фитингам при помощи хомутов. Выход трубки с видеокарты присоединяется к одному из фитингов приспособления, выводящего хладагент из корпуса к рассеивателю. Второй фитинг этого приспособления замыкает круг СВО в корпусе, подключением шланга к оставшемуся фитингу помпы.

Подготовка насоса к работе

Подготовка насоса к работе заключается в подключении к нему электропитания напряжением в +12 В от источника питания при помощи предусмотренного конструкцией разъёма.

Установка радиатора

Радиатор может устанавливаться как на крышке корпуса, так и на его задней панели. В некоторых системах жидкостного охлаждения он располагается рядом с корпусом.

Крепление радиатора

Крепление может быть выполнено самым разнообразным способом. Обычно, к каждому радиатору идёт набор различных конструкций и переходников для его адаптации под любой из существующих корпусов.

После установки радиатора необходимо подключить его к двум фитингам переходника, выходящим из системного блока – тому, который приходит с видеокарты и тому, который идёт на помпу.

Питание радиатора

Питание радиатора осуществляется от напряжения +12 В, также подводимого от источника питания через специальный переходник в заглушке на задней панели корпуса.

Наполнение водой

Наполнение водой СВО производится при выключенном питании ПК. То есть, блок питания будет подключён только к помпе и радиатору, питание от материнки должно быть отключено. Заливка воды в СВО производится в её самой высокой точке – специальной горловине, расположенной на радиаторе. Как только жидкость зальёт весь объём системы, необходимо запустить помпу и прокачать хладагент по всему маршруту, чтобы избавиться от воздушных пузырьков. После чего система герметично закрывается, подключается питание материнки и ПК готов к включению.

Особенности демонтажа

Демонтаж системы начинается со слива из неё охлаждающей жидкости. Это необходимо делать из самой нижней точки – одного из фитингов помпы. Для того, чтобы сделать это без проблем, ещё на этапе проектирования системы жидкостного охлаждения необходимо предусмотреть специальное отведение с краном, который закрыт при нормальной работе охлаждения, а открывается только для слива хладагента.

После того, как жидкость слита, начинается демонтаж системы: снимаем вначале внешний радиатор, затем отсоединяем все шланги и снимаем водоблоки с их посадочных мест (процессора, чипсета, видеокарты). Перед тем, как снять с процессора видеокарты водоблок, саму видеокарту желательно вынуть из корпуса, чтобы не повредить компоненты на ней при отклеивании термопрокладок.

Что такое система жидкостного (водяного) охлаждения и зачем она нужна.

Хорошее охлаждение центрального процессора и процессора видеокарты последние десятилетия является необходимым условием их бесперебойной работы. Но греются в компьютере не только процессор и видеокарта — отдельный кулер может потребоваться микросхеме чипсета, жестким дискам и даже модулям памяти. Производители корпусов добавляют дополнительные вентиляторы, увеличивают их мощность и габариты, улучшают устройство радиаторов. И, разумеется, жидкостные системы охлаждения не могли быть обойдены вниманием.

Читайте также:  Зависает автокад при открытии файла

Вообще, жидкостное охлаждение процессоров – тема не новая: оверклокеры столкнулись с недостаточной эффективностью воздушного охлаждения уже давно. «Разогнанные» до теоретического максимума процессоры грелись так, что не справлялись никакие из имевшихся тогда в продаже кулеров. Систем жидкостного охлаждения в магазинах не было, и оверклокерские форумы полнились темами о самодельных «водянках». И сегодня многие ресурсы предлагают собрать систему жидкостного охлаждения самостоятельно, но смысла в этом уже немного. Стоимость комплектующих сравнима с ценой недорогих СЖО в магазинах, а качество (и, следовательно, надежность) заводской сборки обычно все же выше кустарной.

Почему эффективность СЖО выше, чем у простого кулера?

Рассматриваемые СЖО не имеют вырабатывающих холод элементов, охлаждение происходит за счет воздуха возле системного блока – как и в случае обычного воздушного охлаждения. Эффективность СЖО достигается за счет того, что скорость теплоотвода с помощью движущегося теплоносителя намного выше, чем скорость естественного теплоотвода с помощью теплопередачи внутри металлического радиатора. Но скорость теплоотвода зависит не только от скорости движения теплоносителя, но и от эффективности охлаждения этой жидкости и от эффективности её нагревания теплом процессора. И, если первая задача решается увеличением площади радиатора, площади теплообменника радиатора и улучшением воздухообдува, то во втором случае теплообмен ограничен площадью процессора. Поэтому общая эффективность системы ограничивается эффективностью водоблока процессора. Но даже с таким ограничением СЖО обеспечивают примерно в 3 раза лучший теплосъем по сравнению с обычным воздушным охлаждением. В числах это означает снижение температуры чипа на 15-25 градусов по сравнению с воздушным охлаждением при нормальной комнатной температуре.

Конструкция СЖО

Любая система жидкостного охлаждения содержит следующие элементы:

Водоблок. Его назначение – эффективно снимать тепло с процессора и передавать протекающей воде. Соответственно, чем выше теплопроводность материала, из которого изготовлены подошва и теплообменник водоблока, тем выше и эффективность этого элемента. Но теплопередача также зависит и от площади соприкосновения теплоносителя и радиатора – поэтому конструкция водоблока важна ничуть не меньше материала.

Плоскодонный водоблок Водоблок с игольчатым дном Водоблок со змеевидным теплообменником

Поэтому плоскодонный (бесканальный) водоблок, в котором жидкость просто протекает вдоль стенки, прилегающей к процессору, намного менее эффективен, чем водоблоки со сложной структурой дна или теплообменниками (трубчатыми или змеевидными). Минусами водоблоков со сложной структурой является то, что они создают намного большее сопротивление водяному потоку и, следовательно, требуют более мощной помпы.

Помпа. Распространенное мнение, что чем мощнее помпа, тем лучше и что СЖО без отдельной мощной помпы вообще неэффективна – некорректно. Функция помпы – обеспечить циркуляцию теплоносителя с такой скоростью, чтобы перепад температур между теплообменником водоблока и жидкостью был максимальным. Т.е., с одной стороны, нагревшаяся жидкость должна вовремя выводиться из водоблока, с другой стороны – поступать в водоблок она должна уже полностью охлажденной. Поэтому мощность помпы должна быть сбалансирована с эффективностью остальных элементов системы и замена помпы на более мощную в большинстве случаев не даст положительного эффекта. Маломощные помпы часто объединены в одном корпусе с водоблоком.

— Радиатор. Назначение радиатора – рассеивать тепло, приносимое теплоносителем. Соответственно, он должен быть изготовлен из материала с высокой теплопроводностью, обладать большой площадью и быть укомплектован мощным вентилятором (вентиляторами). Если площадь радиатора СЖО сравнима с площадью радиатора процессорного кулера и вентилятор на ней установлен ничуть не мощнее, то не стоит ожидать от такой СЖО эффективности, превышающей эффективность того же кулера.

— Соединительные трубки должны быть достаточной толщины, чтобы не создавать большого сопротивления водяному потоку. По этой причине обычно используются трубки диаметром от 6 до 13 мм – в зависимости от скорости потока жидкости. В качестве материала трубок обычно используется ПВХ или силикон.

— Теплоноситель должен иметь высокую теплоемкость и высокую теплопроводность. Из доступных и безопасных жидкостей лучше всего этим условиям удовлетворяет обычная дистиллированная вода. Часто в воду добавляются присадки для снижения её коррозирующих свойств, для предотвращения размножения микроорганизмов (зацветания) и просто для эстетического эффекта (цветные присадки в системах с прозрачными трубками).

В мощных системах с большим объемом теплоносителя становится необходимым использование расширительного бачка – резервуара, в который будут уходить излишки жидкости при её термическом расширении. В таких системах помпа обычно объединяется с расширительным бачком.

Характеристики систем жидкостного охлаждения.

Обслуживаемая/необслуживаемая СЖО.

Необслуживаемая система идет с завода полностью в сборе, залитая теплоносителем и загерметизированная. Установка такой системы отличается простотой – некоторые необслуживаемые СЖО установить ничуть не сложнее, чем обычный кулер. Минусы у необслуживаемой СЖО тоже есть:

— Низкая ремонтопригодность. Трубки часто просто запаяны в неразъемные пластиковые штуцеры. С одной стороны, это обеспечивает герметичность, с другой стороны, замена поврежденного элемента такой системы может вызвать осложнения.

— Сложность замены теплоносителя обычно тоже связана с ремонтом системы – если часть жидкости вытекла, снова заполнить необслуживаемую СЖО может оказаться весьма непросто – заливочными отверстиями такие системы, как правило, не снабжаются.

— Низкая универсальность связана с неразборностью системы. Невозможно ни расширить систему, ни заменить какой-либо из её элементов на более эффективный.

— Фиксированная длина трубок ограничивает возможности по выбору места установки радиатора.

Обслуживаемые СЖО часто поставляются в виде набора элементов и установка такой системы потребует времени и некоторой сноровки. Зато и возможности по её кастомизации намного выше – можно добавлять водоблоки для чипсета и для видеокарты, менять все элементы на более подходящие для конкретного компьютера, выносить радиатор на любое (разумное) расстояние от процессора и т.д. Можно не бояться устаревания сокета (и системы охлаждения) при замене материнской платы – для восстановления актуальности потребуется только заменить водоблок процессора. К недостаткам обслуживаемых СЖО, кроме сложности установки и высокой цены, следует отнести большую вероятность протечек через разъемные соединения и большую вероятность загрязнения теплоносителя.

СЖО должна поддерживать сокетматеринской платы, на которую устанавливается. И если обслуживаемую СЖО еще можно приспособить под другой сокет, купив дополнительно соответствующий водоблок, то необслуживаемая СЖО может использоваться только с теми сокетами, что перечислены в её характеристиках.

Количество вентиляторовне оказывает прямого влияния на эффективность СЖО , но большое их количество позволяет снизить скорость вращения каждого отдельного вентилятора при сохранении общего воздушного потока, и, соответственно, снизить шумность при сохранении эффективности. Будет ли СВО с большим количеством вентиляторов эффективнее – зависит от их суммарного максимального воздушного потока.

Максимальный воздушный поток считается в кубических футах в минуту (CFM) и определяет, какой объем воздуха прогоняется через вентилятор в минуту. Чем выше это значение, тем выше вклад этого вентилятора в эффективность радиатора. Размеры (длина, ширина, толщина) радиатора ничуть не менее важны – четыре мощнейших вентилятора, обдувающих простой тонкий радиатор с малой площадью пластин будут охлаждать теплоноситель ничуть не лучше, чем один вентилятор, хорошо подобранный к радиатору с большой площадью пластин.

Материал радиатора определяет его теплопроводность, т.е., с какой скоростью переданное ему тепло будет распределяться по всей площади радиатора. Теплопроводность меди почти в два раза выше, чем теплопроводность алюминия, но в данном случае эффективность радиатора больше зависит от его конструкции и площади, чем от материала..

Материал водоблока, в силу ограниченности его размеров, важнее материала радиатора. Фактически, медь является единственным приемлемым вариантом. Алюминиевые водоблоки (встречающиеся в дешевых СЖО) снижают эффективность системы настолько, что пропадает смысл использования жидкостного охлаждения.

Максимальный уровень шума зависит от максимальной частоты вращения вентиляторов. Если в системе не предусмотрена регулировка частоты вращения, на этот параметр следует обратить пристальное внимание. При наличии регулировки частоты вращения, внимание следует обратить на минимальный уровень шума.

Читайте также:  Как сделать красивый фон для презентации

Уровень шума выше 40 дБ уже может восприниматься как некомфортный (40 дБ соответствует обычному звуковому фону в жилом помещении — негромкая музыка, спокойный разговор). Чтобы шум вентиляторов не мешал сну, он не должен превышать 30 дБ.

Регулировка скорости вращения вентиляторов может быть ручной и автоматической. Ручная регулировка позволяет менять скорость вращения вентиляторов в соответствии с личными предпочтениями, автоматическая же подстраивает скорость под текущую температуру процессора и обеспечивает лучшие условия работы оборудования.

Тип коннектора питания может быть 3-pin и 4-pin.

3-pin коннектор не имеет отдельного провода для изменения скорости вращения вентилятора. Управлять скоростью вращения такого вентилятора можно только изменяя его напряжение питания. Не все материнские платы поддерживают этот способ. Если ваша материнская плата не может управлять скоростью вращения 3-pin вентилятора, то кулеры и двигатель помпы СЖО с 3-pin коннектором питания будут всегда вращаться на максимальной скорости. Для изменения степени охлаждения придется дополнительно покупать реобас.

4-pin коннектор предполагает управление скоростью вращения двигателей с помощью широтно-импульсной модуляции (ШИМ). При этом питание подается полное — 12 вольт – но не постоянно, а импульсами, меняя продолжительность которых, можно очень точно задавать частоту вращения двигателей. Кроме того, при таком способе нет ограничения на минимальную скорость вращения – регулируемый таким способом двигатель может вращаться даже со скоростью 1 об/мин. Единственный недостаток такого способа – он сложнее в реализации, а следовательно, дороже.

Наличие подсветки и прозрачные трубки. Футуристический вид систем водяного охлаждения и возможности их кастомизации сделали СЖО чрезвычайно популярными в среде моддеров. Производители СЖО ответили на эту популярность прозрачными трубками, подсветкой и флуоресцирующими присадками к теплоносителю. Разумеется, вся эта красота имеет смысл только при размещении в системном блоке с прозрачной крышкой.

Варианты выбора.

Если вы ищете недорогую замену огромному башенному кулеру, выбирайте среди [url="https://www.dns-shop.ru/catalog/17a9cc9816404e77/zhidkostnye-sistemy-oxlazhdeniya/?p=1&f=3000-5000&f=92hj]базовых необслуживаемых систем в пределах 3000 — 5000 рублей.

Если вы – фанат оверклокинга и всегда разгоняете свой процессор до максимально допустимых величин, но при этом не хотите возиться с установкой и настройкой обслуживаемой СЖО, вам понадобится [url="https://www.dns-shop.ru/catalog/17a9cc9816404e77/zhidkostnye-sistemy-oxlazhdeniya/?p=1&f=92hj&f=9tr-b1lh-d2hm&f=1800-2700]мощная необслуживаемая СЖО. Это обойдется вам в 6000-11500 рублей.

Если внешний вид компьютера имеет для вас не меньшее значение, чем его производительность, то [url="https://www.dns-shop.ru/catalog/17a9cc9816404e77/zhidkostnye-sistemy-oxlazhdeniya/?order=1&stock=2&f=bt9a-bt96-bt97-bt95&f=92hn]СЖО с подсветкой и прозрачными трубками сделают ваш системный блок намного более эффектным за 4000-30500 рублей.

Если вы не любите лишний шум или если ваш компьютер стоит в спальне – вам потребуются СЖО с пониженным уровнем шума. Такие стоят от 3000 рублей.

Разбирал завалы на ноуте и нашел фотки 6 летней давности, где я запечатлел процесс создания самодельной системы водяного охлаждения (СВО) компьютера.

Ну начнем по порядку. Вероятно, у многих возникнет вопрос: "Анафига?"
Отвечу сразу.

Была приобретена в свое время за кругленькую сумму денег топовая модель процессора Intel Core 2 Quad 2.83GHz/12MB L2/1333MHz /LGA775, коий и по сих пор радует своей производительностью.

Так-же установлен винт WD 1GB/32MB/Black/SATA2, 4GB DDR2 800MHz (Up to 1300MGz) с самодельным радиатором, топовая видеокарта Saphire ATI HD6870 тогда недавно появившаяся топовая модель с поддержкой DX11.

Так-же уже была приобретена игровая материнская плата ASUS R.O.G. series X35-chip 2xPCIEx16 с рассчетом на установку второй видеокарты и сборки Crossfier или SLI. Чуть позже была докуплена вторая карточка, но не аналогичная Saphire ATI HD6870 и даже не другая модель "Красного семейства", а решено было подружить двух непримиримых соперников ATI и NVidia, приобрел ASUS GeForce GT9600 исключительно для поддержки фирменной технологии "Зеленого лагеря" — PhysX.

Для тех, кто не вполне понимает, зачем это — технология PhysX дает поддержку максимально приближенной к реальности физики движения и взаимодействия мелких объектов в игровой графике, как то: пыль в лучах света, листва на ветру, разлетающиеся осколки и т.п.

Вот демонстрация эффекта технологии PhysX в водной среде:

В любимой мной когда-то игре Sacred 2

B Borderlands 2

В Batman: Arkham Origins

Ну и много где еще — можно найти в тырнете.

Почему тогда не поставить видеокарту "зеленого лагеря" ? — конкуренты из "красного лагеря" при равной мощи стоят, как правило, дешевле или имеют бОльшую мощь при равных ценах. Нехватает лишь такой мелочи, как физика) Под физику можно взять карточку весьма дешевую. Основное требование к ней — это наличие более-менее производительного GPU. Наличие "широкой" шины и быстрой и большой памяти не нужно! А такие видеокарточки стоят совсем немного.

Монстр Saphire ATI HD6870 с референсной системой охлаждения занимал ооочень много пространства в корпусе, имел высокопроизводительную и как следствие громкую турбину, откровенно дешевая ASUS GeForce GT9600 имела плохонький радиатор и убогенький кулер на нем, вследствии чего высокопроизводительный GPU нагревался до температур порядка 87-96 градусов! Не порядок!

К этому всему я добавим еще и процессор, разогнанный со штатных 2,83GHz до 3,6GHz. Тепла и шума было моооре. Такую систему я собрал с запасом на 5-6лет, пока я учился в институте (заочник, оплачивал из своего кармана, потому и брал с запасом — денег во время учебы на комп не будет), чтобы она обеспечивала комфортную графику всех игр с разрешением до FullHD и максимальных параметрах графики — идти на компромисс не привык))

Разогнанное железо, высокопроизводительная видеосистема выделяли много тепла. А тепло у нас не берется ниоткуда. Оно берется из сети! Мощности одного БП 450Вт было недостаточным и был установлен второй БП на 350Вт, распределена нагрузка между ними. Почему не купить один новый мощный БП? — а вы посмотрите на них цены… market.yandex.ru/model.xm…odelid=6199502&hid=857707 В то время они стоили в районе 5-7тыс.

Мирился попервости с шумом, открывал балкон — системник охлаждался свежим морозным воздухом, но с наступлением лета ситуация резко осложнилась. Комп попросту стал перегреваться!

Нужно было что-то решать. Начал копать интернеты в поисках способов отвода тепла. Тем временем оборудовал системник дополнительными кулерами для максимального отвода тепла из коробки.

На тот момент в системнике чудом уживались 12 (!) кулеров! Среди которых 2 — блоки питания, 1 — процессор, 1 — охлаждение системы питания процессора, 2 — видеокарты и 6 штук обеспечивали вентиляцию ящика.

Надо-ли говорить о том, какой вой был от этого монстра!

Проштудировав инет, выбран был путь самурая наиболее доступный для дома вид высокопроизводительного охлаждения — это СВО. Купить такое в Екб-то проблема, я не говорю о нашем захолустье. Да и стоят такие системы ой как не дешего. Ну и в конце концов! Наши руки не для скуки!

Так было принято решение о самостоятельном создании системы водяного охлаждения для домашнего компьютера.

Сразу прошу прощения за ужасное качество фото — был тогда только телефон и телефон был древний)

Вот так выглядел системный блок перед модернизацией. Видеокарта сначала была одна.

В первой версии был установлен один водоблок на ЦП. Вся система представляла из себя герметичную систему из прозрачных шлангов, переделанного аквариумного насоса, водоблока процессора, радиатора охлаждения с двумя 120мм вентиляторами, запитанными от 5В для минимизации шума, расширительного бачка с датчиком давления и циркуляции потока ну и схемы защиты от протечек и прекращения циркуляции ОЖ.

Был изготовлен с нуля. Основание — теплосъемник вырезано из толстого куска электротехнической меди (

4мм толщиной). Из тонкой листовой меди (0,4мм) вырезал 120 пластин теплообменной камеры, проложил их электрокартоном, стянул вместе, залудил одну плоскость и припаял к основанию. После удаления электрокартона получили основание с радиатором отвода тепла из 120 пластинок.

Рубашку изготовил из попавшего под руку куска толстого пластика. Верх — медная пластинка 1мм с припаянными на нее медными-же штуцерами.

Сверху устанавливаем Х-образную пластину из железа 1мм с отверстиями под крепежные шпильки вместо штатных защелок крепления радиатора и стягиваем весь "бутерброд" на герметике четырьмя винтами.

Радиатор охлаждения ОЖ

Был изготовлен из медного радиатора печки Газели. Но как есть он был слишком громоздкий, а я поставил себе цель уместить всю СВО в корпус системного блока чтоб наружу ничего не торчало. Системник — обычный MidiTower.

Читайте также:  Office 2016 home and business key

Потому вооружаемся ножевкой по металлу и безжалостно кромсаем радиатор по размеру системника!

Пока радиатор вскрыт, меняем штуцера на меньшего диаметра, чтоб оделась наша трубочка. Так-же не забываем поставить водонепроницаемую перегородку посередине между штуцерами, дабы ОЖ проходила через радиатор, а не тупо из штуцера в штуцер. Из листовой меди вырезаем и припаиваем недостающие стенки.

Теперь немаловажный момент. Ребра радиатора расположены уж очень часто и продуть их компьютерным кулерам, да еще и на пониженном питании будет нереально. Потому вооружаемся отверткой, ножницами и крайне аккуратно сжимаем пластины радиаторов между собой, увеличивая просвет.

Обязательно проверяем на герметичность. С первого раза собрать герметично практически нереально. Потому ищем дырки и как-следует пропаиваем. Если место недоступно, то допустимо пролить герметиком. Проверять на герметичность следует после того, как раздвинули пластины т.к. тут очень высока вероятность повредить каналы радиатора (я проткнул в 2-ух местах).

После устранения дырок будем считать наш радиатор готовым к эксплуатации.

Были приобретены парочка насосов (

10$ за штуку) т.к. при поломке насоса компьютер будет невозможно эксплуатировать.

Суть доработки заключается в уменьшении шума крыльчатки и установке новых штуцеров.

Крыльчатка имеет некоторый ход относительно магнита ротора для уменьшения гидроудара. Но это создает лишний шум, потому крыльчатка была намертво приклеена к магниту на силикон. Так-же из силикона изготовлены 2 шайбы миллиметровой толщины на концы оси для смягчения продольных ударов.

Штуцеры новые были вклеены на эпоксидку.

Следует добавить, что для уменьшения передачи вибраций от насоса на корпус системного блока, насос был установлен на пружинную подвеску на кусок оргстекла, а оно в свою очередь тоже на пружинах к железу системника. Фото этого узла нет, извините.

Сделан из подходящей пластиковой емкости. Можно хоть из стеклянной банки, хоть из куска канализационной трубы с заглушенными концами — тут кто на что горазд. Мой был плоский и широкий для того, чтоб поместиться внизу системника и не мешать установленным платам шины PCI.

Устнавливаем 2 штуцера, делаем перегородку, оставив небольшую щель — это для лучшего отделения воздушных пузыриков из воды.

В качестве датчика потока был выбран миниатюрный компьютерный трехпроводной кулер. На фото не удачное его положение. Располагать следует лопастями непосредственно перед штуцерами, чтоб тот начал вращаться.

Сигнал с датчика Холла снимается желтым проводом и идет на плату контроля циркуляции охлаждающей жидкости.

В качестве защиты от протечек был выбран вариант создания слегка пониженного давления в системе — чтобы не раздавило мягкие трубки системы, но в то-же время при образовании протечки не жидкость польется из системы, а воздух попадет в систему.

Датчик давления был создан из латекса, установлен на крышке расширительного бачка.

В крышке прорезаем отверстие меньшее на 10мм, чем диаметр латексной мембраны, клеим мембрану поверх, к ней приклеиваем небольшую контактную площадку с припаянным к ней проводком. Поверх устанавливаем П-образную конструкцию, ввинчиваем регулировочный винт и подключаем к нему проводок ( у меня это 2 ножки из оргстекла, кусок текстолита с припаянной гайкой и болт в гайке). Регулируем так, чтобы при нормальном атмосферном давлении мембрана поднимаясь замыкала контакт и винт.

Т.к. ATI у меня была еще на гарантии, разбирать дорогостоящую карту и ставить на нее водоблок я не стал. Позже водоблок был собран и установлен на "вспомогательную" видеокарту, тем самым ощутимо понизив децибеллы.

Водоблок видеокарты был создан по отличной от водоблока процессора технологии.

На медное основание были напаяны несколько спиралек из медной проволоки, образовав тем самым ребра охлаждения. Сверху выгнут и припаян медный кожух. Интенсивность нагрева видеочипа в разы меньше, потому такой упрощенный водоблок вполне имеет место быть.

Ах, да защита системы!

Ее создал на небольшой платке, которую уместил на заглушке верхнего свободного слота CD-ROM. Схема имела индикацию режимов на светодиодах, кнопку принудительного пуска насоса даже при отключенном компьютере — это для облегчения процесса наполнения систему водой, и выход на реле для отключения питания компьютера в случае протечки или прекращения циркуляции ОЖ и реле для включения насоса. Пуск компьютера остался штатным. При включении БП напряжение подается на реле включения насоса и вся система начинает функционировать.

Одно НО. Т.к. блоки питания в случае протечки обестачивались полностью, питать схему от дежурки 5В не было возможным и пришлось поставить третий уже блок питания, но маломощный на основе обычного трансформатора)) Сейчас можно было-бы поставить ЗУ от мобилки на его место.

Испытания проводил в лаборатории на столе.

Первым делом вырезал место под второй БП снизу под HDD, предусмотрел вентиляционные отверстия для выдува теплого воздуха.

Массивный радиатор с двумя установленными на нем кулерами 120мм установил в самый верх, заняв 2 лота под CD-ROM. Естественно, выпиливаем верх системника под отвод нагретого воздуха. Что плюс, так то, что сверху мой системник имеет декоративную крышку с вентиляционными отверстиями, так что радиатор снаружи не виден!

На верхнюю заглушку отсека с радиатором ставим плату защиты с индикацией и кнопкой принудительного пуска насоса. 2 DVD-ROMa опускаются вниз.

На стенку под основным БП крепим 3 реле (2 на отключение питания и 1 на пуск насоса) — обычные 12В автомобильные, но с немного доработанной конструкцией, дабы не пустить 220 в цепи питания компа. Там-же разместится и сам насос.

Ставим водоблок на процессор.

После заполнения водой перекрываем шланг заправки и создаем разряжение в системе через заранее подготовленный шланг от медицинской системы. Глушим и его. Наш датчик давления должен разомкнуть свой контакт.

Устраиваем все как должно стоять и ставим видеокарту. Подключаем третий БП, который я установил на боковой крышке системника на разъеме.

Система собрана и запущена. Все заработало сразу. И прежде всего поразила ТИШИНА! После того адского рева, что издавал системник прежде осталось лишь едва слышное шуршание блоков питания и насоса. Ну видеокарта давала о себе знать лишь в мощных играх))

Итого, что имеем.

CPU 2.83GHz/1333MHz t=80градусов
RAM 800MHz
GPU NVidia 915MHz t=94градуса
HDD t=53градуса
Дикий рев кулеров

CPU 3,6GHz/1900MHz t=54градусов
RAM 1300MHz
GPU NVidia 1050MHz t=62градуса
HDD t=43градуса

Результаты тестов в 3DMark поднялись на 20%

Цена вопроса:
Насосы 2шт 20$
Радиатор печки Газель медный 30$
Трубки прозрачные 2$
Вода дистиллированная 1$
Хомутики 5$
Оргсеткло, метизы, пружины, медь, инструмент — бесплатно.
Опыт и удовлетворение от работы — бесценны!

Цель была достигнута. Имел мощный разогнанный компьютер с низким уровнем шума и стабильной работой, вся система уместилась во внутрь системного блока. Но как там все тесно… И весить он стал тонну, не иначе!)))

Но в этой бочке меда не обошлось и без капли дегтя…
Со временем начали появляться протечки, а искать и устранять не было времени и желания. Потому плата защиты была отключена, за что и поплатился через некоторое время. В один прекрасный момент компьютер встретил меня холодным черным экраном после нажатия кнопки питания. С водоблока процессора вода набежала на видеокарту, умертвив ее. Благо была вторая видеокарта, на которой продержался до покупки новой. Немного досталось и материнке, отчего срок ее работы уменьшился в разы. Сейчас стоит и новая мать, и видеокарта мощностью аналогично покойнице, но уже в 2 раза дешевле. Процессор тот-же, оперативка DDR3 4GB, жесткий тот-же.

Но вот к играм я остыл после приобретения своей самой заветной и любимой игрушки: Audi 80 Meine liebe fräulein потому проц не гоню, да и шумит он на новой материнке в разы меньше, новая видеокарта практически не шумит, БП один убрал, убрал и всю СВО… Не к чему мне теперь такая мощь да и нет желания восстанавливать и следить за ней. Зато есть что вспомнить =)

Приятных Вам выходных, теплой погоды, вкусного шашлычка и холодных компьютеров))

Ссылка на основную публикацию
Как узнать характеристики ноута
Доброго дня. Я думаю, что многие при работе за компьютером или ноутбуком сталкивались с безобидным и простым вопросом: «как узнать...
Как удалиться из приложения фотострана
Социальная сеть «Фотострана» многим не нравится своей навязчивостью, что также проявляется, когда пользователь желает удалить свой аккаунт. В самой сети...
Как удалиться с сайта навечно
На сегодняшний день существует множество сайтов знакомств, и зачастую пользователи регистрируются на нескольких одновременно в поисках интересного общения, новых друзей...
Как узнать характеристики сетевой карты
Здравствуйте, друзья! Тема сегодня общая – я расскажу, как узнать, какая сетевая карта установлена в ваш компьютер. Это понадобится, если...
Adblock detector