Метод монте карло площадь фигуры

Метод монте карло площадь фигуры

Площадь произвольной фигуры можно вычислить методом Монте-Карло.

Фигура вписывается в другую фигуру с известной площадью. Случайным образом на последнюю ставятся произвольное количество точек. Площадь определяется по формуле S=Nф/N , где Nф – количество точек попавших в заданную фигуру, N – общее количество точек. Достоинство данного метода заключается в простоте реализации, сложность состоит только в определении попадания точки внутрь заданной фигуры. Очевидно, что точность вычисленной площади зависит от количества точек. Приемлемая точность может быть достигнута только при большом их количестве. В этом заключается один из недостатков метода. Точность также сильно зависит от

качества генератора случайных чисел.

46.Дискетное программирование. Метод ветвей и границ.В основе метода “ветвей и границ ” лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода элементов разбиения подвергается проверке для выяснения содержит данное подмножество оптимальное решение или нет.

Проверка осуществляется посредством вычисления оценки снизу для целевой ф-ий на данном подмножестве. Если оценка снизу не меньше “рекорда ”-наилучший из Найденных решений ,то подмножество может быть отброшено. Проверка подмножества может быть отброшено еще и в том случае, когда в нем удастся найти наилучшее решение. Если значение целевой ф-ции на найденном решении меньше “рекорда”,то происходит смена “рекорда”.

По окончании работы алгоритма “ рекорд” является результат его работы.

Если удастся отбросить все элементов разбиения, то рекорд – оптимального решения задачи ,в противном случае из неотображаемое подмножество выбирается перспективнее и оно подвергается разбиению.

51. Имитационное моделирование. Метод Монте-Карло, область применения

Имитационное моделирование — это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему и с ней проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация — это постижение сути явления, не прибегая к экспериментам на реальном объекте). Выделяют следующие основные классы имитационных моделей:

В случае непрерывных моделей предметная область описывается совокупностью динамических связей, отражающих развитие процесса во времени в форме реккурентных соотношений.

Модель воспроизводит поведение объекта за определенный период времени. В этом смысле имитационная модель является динамической, значение всех переменных входящих в имитационную модель вычисляются в каждый момент модельного времени. Затем через определенный интервал на основе старых значений вычисляются новые значения переменных.

Дискретный тип модели описывает потоки случайных событий, проходящих через сложную совокупность путей и узлов, направлен на исследование стационарных установившихся процессов.

В случае пространственных моделей рассматриваются процессы, происходящие в пространстве на плоскости или в объеме

ДЛЯ ПОСТРОЕНИЯ ИМИТАЦИОННЫХ МОДЕЛЕЙ используются переменные типов – фонд (объем искомого продукта, оценка некоторых вероятностей), поток (объем количества продукта который поступает или извлекается из соответствующего фонда в единицу модельного времени), время, конвертор

Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину Х, математическое ожидание которой равно а: М(Х)=а.

Практически же поступают так: производят n испытаний, в результате которых получают n возможных значений Х; вычисляют их среднее арифметическое и принимают x в качестве оценки (приближённого значения) a* искомого числа a:

Поскольку метод Монте-Карло требует проведения большого числа испытаний, его часто называют методом статистических испытаний. Теория этого метода указывает, как наиболее целесообразно выбрать случайную величину Х, как найти её возможные значения. В частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой а*.

48.Простешие задачи,решаемые методом динамическим программировании.

Распределение ресурсов(финансовые ,сырьевых ,материальные) между предприятиями, замена промышленного оборудования,прокладка коммуникаций. В этих задачах, как правило, выступают отрезки времени, которые явно задаются в условии задачи.

52.Метод Монте-Карло. Сущность, оценка погрешности, область применения.

Оценка погрешности метода Монте-Карло.

Пусть для получения оценки a* математического ожидания а случайной величины Х было произведено n независимых испытаний (разыграно n возможных значений Х) и по ним была найдена выборочная средняя , которая принята в качестве искомой оценки. Ясно, что если повторить опыт, то будут получены другие возможные значения Х, следовательно, другая средняя, а значит, и другая оценка a*. Уже отсюда следует, что получить точную оценку математического ожидания невозможно. Естественно возникает вопрос о величине допускаемой ошибки. Ограничимся отысканием лишь верхней границы d допускаемой ошибки с заданной вероятностью (надёжностью) g.

Интересующая нас верхняя грань ошибки d есть не что иное, как «точность оценки» математического ожидания по выборочной средней при помощи доверительных интервалов. Рассмотрим следующие три случая.

1. Случайная величина Х распределена нормально и её среднее квадратичное отклонение d известно.

В этом случае с надёжностью g верхняя граница ошибки, (*)

где n число испытаний (разыгранных значений Х); t – значение аргумента функции Лапласа, при котором , s — известное среднее квадратичное отклонение Х.

2. Случайная величина Х распределена нормально, причём её среднее квадратическое отклонение s неизвестно.

В этом случае с надёжностью g верхняя граница ошибки, (**)

где n – число испытаний; s – «исправленное» среднее квадратическое отклонение, находят по таблице приложения 3.

3. Случайная величина Х распределена по закону, отличному от нормального.

В этом случае при достаточно большом числе испытаний (n>30) с надёжностью, приближённо равной g, верхняя граница ошибки может быть вычислена по формуле (*), если среднее квадратическое отклонение s случайной величины Х известно; если же s неизвестно, то можно подставить в формулу (*) его оценку s – «исправленное» среднее квадратическое отклонение либо воспользоваться формулой (**). Заметим, что чем больше n, тем меньше различие между результатами, которые дают обе формулы. Это объясняется тем, что при распределение Стьюдента стремится к нормальному.

Из изложенного следует, что метод Монте-Карло тесно связан с задачами теории вероятностей, математической статистики и вычислительной математики. В связи с задачей моделирования случайных величин (в особенности равномерно распределённых) существенную роль играют также методы теории чисел.

45 Дискетное программирование. Метод Гомори .Идея метода Гомори состоит в том ,что поставленную задачу сначала решаем любым методом линейного программирования(напр симплекс методом),а затем в полученном ответе выделяем дробных части и составляем дополнительное ограничение. Полученное дополнительное ограничение вводим в последнюю(по ходу решения)матрицу симплексного метода и определяем целочисленный ответ.

54.Элементы теории матричных игр. Основные понятия и определения.

В теории игр исследуются модели и методы принятия решений в конфликтных ситуациях. В рамках теории игр рассматриваются парные игры (с двумя сторонами) или игры многих лиц. Участников игры принято называть игроками.

Читайте также:  Как обновить диспетчер задач на windows 10

Игра состоит из последовательности действий (ходов), которые подразделяются на личные (совершаемые игроками осмысленно на основе некоторого правила – стратегии) и случайные (не зависящие от игроков). В теории игр рассматриваются ситуации, в которых обязательно присутствуют личные ходы.

Стратегия игрока – это набор правил, используемых при выборе очередного личного хода.

Целью игры является нахождение оптимальной стратегии для каждого игрока, т. е. такой, при которой достигается максимум ожидаемого

среднего выигрыша при многократном повторении игры. Предполагается, что игроки ведут себя разумно, исключаются элементы азарта и риска.

Матричная игра – это парная игра, которая задается набором чистых стратегий <1. n>и <1. m>первого и второго игроков, а также платежной матрицей (Ay)mxn, определяющей выигрыш первого игрока при выборе игроками стратегий i и j соответственно. Целью первого игрока является максимизация своего выигрыша, а целью второго – минимизация выигрыша противника.

Стратегия игрока – это набор правил для определения варианта действий, используемых при выборе каждого личного хода.

Результат ходов игроков оценивается платежными функциями участников игры, которые можно интерпретировать как их выигрыши. Если сумма выигрышей всех игроков равна нулю, то такую игру называют игрой с нулевой суммой.

Стратегия игрока называется оптимальной, если при многократном повторении игры его средний выигрыш максимален.

В дальнейшем будем считать, что игроки ведут себя разумно (без риска и азарта). В рамках данного пособия рассмотрим матричные игры.

Стратегии бывают чистыми (неслучайные решения игроков) и смешанными (стратегию можно рассматривать как случайную величину).

Нижняя цена игры α — это максимальный выигрыш, который мы можем гарантировать себе, в игре против разумного противника, если на протяжении всей игры будем использовать одну и только одну стратегию (такая стратегия называется "чистой").

Верхняя цена игры β — это минимальный проигрыш, который может гарантировать себе игрок "В", в игре против разумного противника, если на протяжении всей игры он будет использовать одну и только одну стратегию.

41. Сетевая модель. Алгоритм ранжирования событий.

Нумерацию событий рекомендуется выполнять по след. Алгоритму:

1.Определить начальное событие.Это событие А.

2.Условно вычеркнуть работы, выходящие из начального события А. Событиям Б,В и Г, которые имеют только входящие работы , присвоить ранг 1.

3.Условно вычеркиваем работы, выходящие из событий 1-го ранга. Событиям Д и Е присваиваем ранг 2 и т.д. Событиям 3 и Ж – ранг 3, событию И- 4.

4.После назначения ранга событиям выполняется нумерация событий по след. Правилам:

-Собыитя нумеруются слева направо, т.е. от начального события к конечному

-Если несколько событий имеют одинаковый ранг, то нумерация событий выполняеся сверху вниз.

55. Элементы теории матричных игр. Цена игры, стратегии

В теории игр исследуются модели и методы принятия решений в конфликтных ситуациях. В рамках теории игр рассматриваются парные игры (с двумя сторонами) или игры многих лиц. Участников игры принято называть игроками.

Игра состоит из последовательности действий (ходов), которые подразделяются на личные (совершаемые игроками осмысленно на основе некоторого правила – стратегии) и случайные (не зависящие от игроков). В теории игр рассматриваются ситуации, в которых обязательно присутствуют личные ходы.

Стратегия игрока – это набор правил, используемых при выборе очередного личного хода.

Целью игры является нахождение оптимальной стратегии для каждого игрока, т. е. такой, при которой достигается максимум ожидаемого среднего выигрыша при многократном повторении игры. Предполагается, что игроки ведут себя разумно, исключаются элементы азарта и риска.

Матричная игра – это парная игра, которая задается набором чистых стратегий <1. n>и <1. m>первого и второго игроков, а также платежной матрицей (Ay)mxn, определяющей выигрыш первого игрока при выборе игроками стратегий i и j соответственно. Целью первого игрока является максимизация своего выигрыша, а целью второго – минимизация выигрыша противника.

Стратегия игрока – это набор правил для определения варианта действий, используемых при выборе каждого личного хода.

Результат ходов игроков оценивается платежными функциями участников игры, которые можно интерпретировать как их выигрыши. Если сумма выигрышей всех игроков равна нулю, то такую игру называют игрой с нулевой суммой.

Стратегия игрока называется оптимальной, если при многократном повторении игры его средний выигрыш максимален.

В дальнейшем будем считать, что игроки ведут себя разумно (без риска и азарта). В рамках данного пособия рассмотрим матричные игры.

Стратегии бывают чистыми (неслучайные решения игроков) и смешанными (стратегию можно рассматривать как случайную величину).

Нижняя цена игры α — это максимальный выигрыш, который мы можем гарантировать себе, в игре против разумного противника, если на протяжении всей игры будем использовать одну и только одну стратегию (такая стратегия называется "чистой").

Верхняя цена игры β — это минимальный проигрыш, который может гарантировать себе игрок "В", в игре против разумного противника, если на протяжении всей игры он будет использовать одну и только одну стратегию.

56.Игры с природой. Основные понятия и определения.

Игровая модель – модель, в которой не ставится задача найти какое-то числовое решение, а требуется лишь очертить область возможных решений или предоставить некоторые дополнительные сведения о возможном развитии событий и рекомендовать правила поведения.

Игра с противодействием – конфликтная ситуация, развивающаяся спонтанно.

Игровая модель строится по определенным законам, а игроки придерживаются определенных правил.

Парная игра – игра с участием минимум двух человек.

Множественная игра – игра с участием нескольких человек.

Стратегическая игра – это игра при которой существует придерживание определенных правил игроком, во время игры он может менять вариант своего поведения, то есть сменить стратегию.

Конечная игра – игра содержащая ограниченное количество стратегий.

Бесконечная игра – не имеющая ограничений на стратегию.

Оптимальная стратегия – приносящая игроку максимальный выигрыш.

Нулевая сумма – сумма выигрыша одного игрока является суммой проигрыша другого, итого в сумме нуль.

Нижняя цена игры – минимально гарантированный выигрыш.

Верхняя цена игры – минимально возможный проигрыш.

Неустойчивая стратегия – стратегия, при которой фирма не знает планов конкурента и не может выбрать другую стратегию.

Устойчивая стратегия – стратегия, при которой нижняя цена игры = верхней цене игры (задача с Седловой точкой)

Читайте также:  Как изменить размер страницы в pdf

Формулировка осторожной стратегии – получить максимальный доход из возможных минимальных.

Смешанная стратегия – задача не имеет седловой точки, использование двух и более стратегий.

Доминирующая строка – строка, содержащая элементы большие или равные соответствующим элементам другой строки, называемой поглощаемой.

Доминирующий столбец – столбец, содержащий элементы меньшие

57. Игры с природой. Критерий Вальце и Гульвица.

Игровая модель – модель, в которой не ставится задача найти какое-то числовое решение, а требуется лишь очертить область возможных решений или предоставить некоторые дополнительные сведения о возможном развитии событий и рекомендовать правила поведения.

Игра с противодействием – конфликтная ситуация, развивающаяся спонтанно.

Игровая модель строится по определенным законам, а игроки придерживаются определенных правил.

Парная игра – игра с участием минимум двух человек.

Множественная игра – игра с участием нескольких человек.

Стратегическая игра – это игра при которой существует придерживание определенных правил игроком, во время игры он может менять вариант своего поведения, то есть сменить стратегию.

Конечная игра – игра содержащая ограниченное количество стратегий.

Бесконечная игра – не имеющая ограничений на стратегию.

Оптимальная стратегия – приносящая игроку максимальный выигрыш.

Нулевая сумма – сумма выигрыша одного игрока является суммой проигрыша другого, итого в сумме нуль.

Нижняя цена игры – минимально гарантированный выигрыш.

Верхняя цена игры – минимально возможный проигрыш.

Неустойчивая стратегия – стратегия, при которой фирма не знает планов конкурента и не может выбрать другую стратегию.

Устойчивая стратегия – стратегия, при которой нижняя цена игры = верхней цене игры (задача с Седловой точкой)

Формулировка осторожной стратегии – получить максимальный доход из возможных минимальных.

Смешанная стратегия – задача не имеет седловой точки, использование двух и более стратегий.

Доминирующая строка – строка, содержащая элементы большие или равные соответствующим элементам другой строки, называемой поглощаемой.

Доминирующий столбец – столбец, содержащий элементы меньшие

Критерий Вальде (пессимистический) – Это критерий крайнего пессимизма. В соответствии с этим критерием в качестве оптимальной рекомендуется выбирать ту стратегию, которая гарантирует в наихудших условиях максимальный выигрыш, т.е. максиминную стратегию maxminaijОсторожная стратегия, которая сведет к минимуму риск проигрыша и доставит минимальную прибыльТо есть критерий совпадает с нижней ценой игры.

Критерий Гурвица – занимает промежуточное значение между Вальде и максимума. Сам игрок определяет вероятность своего «везения». Max (αminaij+ (1- α) maxaij) где 0

Последнее изменение этой страницы: 2016-04-23; Нарушение авторского права страницы

Метод Монте-Карло.

Метод Монте-Карло, или метод статистических испытаний, — это численный метод, основанный на моделировании случайных величин и построении статистических оценок для искомых величин.

Суть метода состоит в следующем. Для вычисления площади некоторой фигуры, проведем эксперимент: поместим данную фигуру в квадрат и будем наугад бросать точки в этот квадрат. Естественно предполагать, что чем больше площадь фигуры, тем чаще в нее будут попадать точки. Таким образом, можно сделать допущение: при большом числе точек, наугад выбранных внутри квадрата, доля точек, содержащихся в данной фигуре, приближенно равна отношению площади этой фигуры и площади квадрата.

Такой метод приближенного нахождения площадей фигур и носит название метода Монте-Карло.

Пример. Вычисление числа π методом Монте-Карло.

Постановка задачи: для вычисления числа π методом Монте-Карло рассмотрим круг радиуса 1 с центром в точке (1, 1). Круг вписан в квадрат, сторона которого, а=2. Тогда площадь квадрата Sквадрата= a 2 = 2 2 = 4.

Выбираем внутри квадрата N случайных точек. Выбрать точку означает задать ее координаты – числа x и y.

Обозначим Nкруга – число точек попавших при этом внутрь круга.

Точка принадлежит квадрату, если 0≤x≤2 и 0≤y≤2.

Если (x-1) 2 +(y-1) 2 ≤ 1, то точка попадает в круг, иначе она находится вне круга. Геометрически очевидно, что

Отсюда

То есть для круга единичного радиуса:

Но для круга единичного радиуса , следовательно получаем: .

Данная формула дает оценку числа π. Чем больше N, тем больше точность этой оценки. Следует заметить, что данный метод вычисления площади будет справедлив только тогда, когда случайные точки будут не просто случайными, а еще и равномерно разбросанными по всему квадрату.

Для моделирования равномерно распределенных случайных чисел в интервале от 0 до 1 в языке программирования Turbo Pascal используется датчик случайных чисел – функция RANDOM, которая выдает последовательность случайных величин, равномерно распределенных от 0 до 1.

Таким образом, суть компьютерного эксперимента заключается в обращении к функции RANDOM для получения N раз координат х и у точки. При этом определяется, попала ли точка с координатами (х,у) в круг единичного радиуса. В случае попадания значение величины Nкруга увеличивается на 1.

var i, n, n1 : LongInt; x, y, pi : real; begin Randomize;

WriteLn(‘Введите количество точек n=’);

Readln(n); for i:=1 to n do begin x:=2*Random; y:=2*Random; if sqr(x-1)+sqr(y-1) Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

    #

В начале урока рассказываю идею метода. Ребята, сегодня мы рассмотрим интересный метод приближенного вычисления площадей фигур – метод Монте – Карло. Пусть у нас есть какая – нибудь фигура на плоскости, площадь которой ( Sfig ) нам необходимо найти. Ограничим ее другой фигурой, площадь которой ( Stotal ) мы можем легко вычислить. Например, прямоугольником АСDB со сторонами, параллельными координатным осям (см. рис. 1). И пусть про любую точку прямоугольника мы можем быстро узнать, попадает эта точка внутрь фигуры, площадь которой мы ищем, или нет.

А теперь начнем опыт – будем бросать на бумагу зерна случайным образом (вообще – то это нелегко сделать, чтобы обеспечить случайность). Когда нам покажется, что зерна почти полностью покрыли бумагу, посчитаем, сколько всего зерен на прямоугольнике (пусть их число Ntotal ) и сколько из них на фигуре ( Nfig ). Ясно, что число зерен, попавших внутрь фигуры, пропорционально ее площади: больше площадь – больше зерен, меньше площадь – меньше зерен. Поэтому, поделив количество зерен , попавших внутрь фигуры , на количество всех зерен в прямоугольнике, мы сможем найти, какую часть площади прямоугольника занимает фигура:

Промоделируем этот опыт на ЭВМ. Предположим, нам надо найти площадь фигуры ограниченной сверху кривой Y = F(X), а снизу – осью абсцисс. Пусть Y = cos(X), а Х I [– p /2, p /2] (см. рис. 2). Ограничим нашу фигуру прямоугольником АСDB, его площадь равна p .

Читайте также:  Духовой шкаф thor отзывы

Из чего должен состоять алгоритм:

1. Бросание зерна – бросание случайной точки, координаты X и Y которой случайны, причем Х должна меняться от – p /2 до p /2, а Y – от 0 до 1. И в этих интервалах X и Y должны появляться с одинаковой вероятностью в любой точке этих отрезков, т.е. X и Y должны быть равномерно распределены по осям. Тут надо напомнить ребятам, как получить равномерно распределенное случайное вещественное число на интервале [А, В]:

Х = random* ( B – A) + A

2. Надо определить, куда попала точка – под кривую или выше нее. И вести подсчет Nfig. Условие попадания точки под кривую: Y ? sin (X).

3. Повторить пп.1 и 2 столько раз, чтобы получить желаемую точность результатов.

Дети без труда напишут программу по данному алгоритму (на практическом занятии). И после этого наступает момент разочарования. Сухие цифры.

Предложение учителя: давайте создадим проект в Delphi, который наглядно демонстрировал бы работу метода Монте – Карло. Разработаем интерфейс программы. Тут ребята сами предлагают несколько вариантов оформления проекта, один из которых представлен на рис. 3.

Разместим на форме следующие компоненты:

Edit – окно редактирования для ввода общего количества испытаний (бросков зерен) – Ntotal;

Button – кнопка для запуска работы метода Монте – Карло;

Panel – панель для вывода посчитанной площади фигуры;

(все вышеперечисленные компоненты расположены на вкладке Standart Палитры компонентов)

Image – для вывода точек, попавших в искомую область (компонент расположен на вкладке Additional Палитры компонентов).

Если необходимо, надо напомнить ребятам некоторые свойства и методы выбранных компонентов (это может быть и домашним заданием предыдущего урока, чтобы не терять время на “воспоминания”) .

Свойство Text – содержит текст, который пользователь набирает в окне Edit. Этот текст надо преобразовать в число Ntotal. Для этого в Delphi есть необходимая функция StrToInt:

Ntotal = StrToInt (Edit1.Text).

Свойство Caption – содержит текст, который выводится на панель. Чтобы вывести полученное число Sfig на панель, мы должны преобразовать его в строку S с помощью процедуры Str:

а потом вывести эту строку на панель следующим образом:

Panel1.Caption := ‘Площадь фигуры = ‘ + S

Свойства Height и Width – соответственно высота и ширина компонента;

Свойство Canvas – отводит канву (место) для рисования на компоненте Image;

FillRect(ClientRect) – закрашивает область клиента компонента Image каким – либо цветом

(по – умолчанию – белым), т.е. стирает предыдущую картинку;

MoveTo(X, Y) – перемещает перо в точку с координатами X, Y без проведения линии (координаты задаются в пикселях);

LineTo(X, Y) – проводит линию из текущей точки в точку с координатами X, Y;

Pixels[I, J] – содержит цвет точки с координатами I, J.

У кнопки (компонент Button) мы будем обрабатывать событие onClick (событие нажатие кнопки). Т.е. вышеописанный алгоритм мы программируем в процедуре Button1Click.

Тут учитель задает вопрос классу: “ Какая проблема возникает при выводе точки на экран (на компонент Image)?” Ответ: расчетные координаты очень малы (0 ? Y ? 1,меньше пикселя, -p /2 ? X ? p /2); а если взять другую кривую Y = F(X), они могут оказаться слишком большими (больше размера компонента Image). Поэтому, при выводе значений функций (графиков) на экран монитора, необходимо преобразовывать расчетные координаты в графические с учетом дискретности растровой сетки монитора, а также предусмотреть возможность автоматического масштабирования функции (графика) по осям координат. Для этого желательно создать отдельную подпрограмму.

Для полного размещения функции (графика) в расчетной области (это область компонента Image) необходимо определить X_min, X_max, Y_min, Y_max – минимальные и максимальные значения по X и по Y соответственно. X_min =А, X_max = В. Как найти Y_min, Y_max.

Коллективно обсуждается следующий алгоритм:

1. Разобьем интервал [А, В] по Х на N равных частей и определим массивы значений аргумента и функции X[i] и Y[i] = F(X[i]), где I = 1..N;
2. Определяем наибольшее Y_max и наименьшее Y_min значения функции в заданном интервале изменения аргумента;
3. Находим коэффициенты масштабирования Kx, Ky при построении графика в заданной области;
4. Т.к. коэффициенты масштабирования Kx, Ky могут отличаться, то выводимый график может искажаться. Устраняем искажения графика;
5. Преобразуем расчетные координаты точки X, Y в графические Xg, Yg. С учетом того, необходимости “переворота” оси Y, которая в координатах монитора направлена сверху вниз.

Листинг программы, реализующей данные алгоритмы представлен в конце статьи. Результат работы программы при разном количестве испытаний представлен на рис. 3, 4.


Задания для самостоятельной работы:

1. Применить метод Монте – Карло для приближенного вычисления площади фигуры, ограниченной сверху кривой Y = sin (X), при Х I [ 0, p ];
2. Применить метод Монте – Карло для приближенного вычисления числа p . Подсказка: рассмотреть круг единичного радиуса с центром в т. (1, 1). Его площадь и будет равна p .
3. Применить метод Монте – Карло для приближенного вычисления площади фигуры, ограниченной сверху кривой Y = sin (X), при Х I [ 0, 2p ];
4. Применить метод Монте – Карло для приближенного вычисления площадей фигур, представленных на рис. 5 – 7.



5. Доработать проект:

а) организавать проверку правильности ввода информации в поле Edit (чтобы вводились только целые числа);
б) разметить оси и подписать числовые значения.

На последующих уроках, на которых предполагается изучение тем “Вычисление площадей (интегралов) методом трапеций и методом прямоугольников”, можно предложить ребятам доработать проект, поместив на форму дополнительные компоненты Image, Button, Edit, Panel (для каждого численного метода – свои). В окно компонента Edit пользователь будет вводить количество разбиений интервала [А, В] по Х. Таким образом, ребята смогут сравнить и наглядно увидеть работу всех трех численных методов.

unit Monte;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls, Buttons;
type
TForm1 = class(TForm)
Panel1: TPanel;
BitBtn1: TBitBtn;
Edit1: TEdit;
Label1: TLabel;
Image1: TImage;

const A = -Pi/2.0; B = pi/2.0; n = 1000;

var
Form1: TForm1;
N_total:longint;
implementation

Function FUNC(x:real):real;
begin
Func:=Cos(x);
end;

Procedure Graphic( var right, down: integer;
var X_min, X_max, Y_min, Y_max, Kx, Ky: real);
type arr=array[1..n] of real;
var
X, Y: arr; dx: real;
i: integer;
begin
dx:=(B-A)/(n-1);
for i:=1 to n do begin X[i]:=A+dx*(i-1);
Y[i]:=FUNC(X[i]);
end;

X_max:=B; X_min:=A;
Y_max:=Y[1]; Y_min:=Y[1];
for i:=2 to n do begin
if Y_max Y[i] then Y_min:=Y[i];
end;

Ссылка на основную публикацию
Мегафон опции за рубежом
Всем абонентам мобильной связи известно, что оплата услуг в роуминге достаточно высокая. Кроме того, нужно платить за входящие звонки. И...
Люстра с пультом управления светодиодная инструкция
Идея установить и подключить люстру с пультом замечательна тем, что хозяева квартиры получают возможность управлять освещением, не привязываясь к выключателю....
Ля рош позе скидки
12 актуальных предложений март 2020 Сэкономьте 10% с промокодом при покупке более 3000 рублей Приобретите в интернет-магазине La Roche Posay...
Мегафон отправить деньги с телефона на телефон
Каждый клиент компании Мегафон при необходимости может со своего счёта пополнить баланс близкого, который также пользуется услугами данного оператора. Для...
Adblock detector